- Home
- Search Results
- Page 1 of 1
Search for: All records
-
Total Resources2
- Resource Type
-
0000000002000000
- More
- Availability
-
20
- Author / Contributor
- Filter by Author / Creator
-
-
Pellegrinelli, Peter J. (2)
-
Perez, Lark J. (2)
-
Bernard, Josephine (1)
-
Boughton, John R. (1)
-
Calvez, Samantha A. (1)
-
Capilato, Joseph N. (1)
-
Edwards, James L. (1)
-
Grinias, James P. (1)
-
Hoy, Erik P. (1)
-
Kaplitz, Alexander S. (1)
-
Mattiucci, Joseph (1)
-
Mostafa, Mahmoud Elhusseiny (1)
-
Philippi, Shane (1)
-
Saw, Yih Ling (1)
-
Schnorbus, Logan (1)
-
Wroniuk, Faith L. (1)
-
#Tyler Phillips, Kenneth E. (0)
-
#Willis, Ciara (0)
-
& Abreu-Ramos, E. D. (0)
-
& Abramson, C. I. (0)
-
- Filter by Editor
-
-
null (1)
-
& Spizer, S. M. (0)
-
& . Spizer, S. (0)
-
& Ahn, J. (0)
-
& Bateiha, S. (0)
-
& Bosch, N. (0)
-
& Brennan K. (0)
-
& Brennan, K. (0)
-
& Chen, B. (0)
-
& Chen, Bodong (0)
-
& Drown, S. (0)
-
& Ferretti, F. (0)
-
& Higgins, A. (0)
-
& J. Peters (0)
-
& Kali, Y. (0)
-
& Ruiz-Arias, P.M. (0)
-
& S. Spitzer (0)
-
& Sahin. I. (0)
-
& Spitzer, S. (0)
-
& Spitzer, S.M. (0)
-
-
Have feedback or suggestions for a way to improve these results?
!
Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
The analysis of organic acids in complex mixtures by LC‐MS can often prove challenging, especially due to the poor sensitivity of negative ionization mode required for detection of these compounds in their native (i.e., underivatized or untagged) form. These compounds have also been difficult to measure using supercritical fluid chromatography (SFC)‐MS, a technique of growing importance for metabolomic analysis, with similar limitations based on negative ionization. In this report, the use of a high proton affinity N ‐(4‐aminophenyl)piperidine derivatization tag is explored for the improvement of organic acid detection by SFC‐MS. Four organic acids (lactic, succinic, malic, and citric acids) with varying numbers of carboxylate groups were derivatized with N ‐(4‐aminophenyl)piperidine to achieve detection limits down to 0.5 ppb, with overall improvements in detection limit ranging from 25‐to‐2100‐fold. The effect of the derivatization group on sensitivity, which increased by at least 200‐fold for compounds that were detectable in their native form, and mass spectrometric detection are also described. Preliminary investigations into the separation of these derivatized compounds identified multiple stationary phases that could be used for complete separation of all four compounds by SFC. This derivatization technique provides an improved approach for the analysis of organic acids by SFC‐MS, especially for those that are undetectable in their native form.more » « less
-
Capilato, Joseph N.; Pellegrinelli, Peter J.; Bernard, Josephine; Schnorbus, Logan; Philippi, Shane; Mattiucci, Joseph; Hoy, Erik P.; Perez, Lark J. (, Organic & Biomolecular Chemistry)null (Ed.)The development of a novel acetyl nitrate mediated oxidative conversion of methyl ketones to carboxylic acid derivatives is described. By analogy to the haloform reaction and supported by experimental and computational investigation we propose a mechanism for this transformation.more » « less
An official website of the United States government
